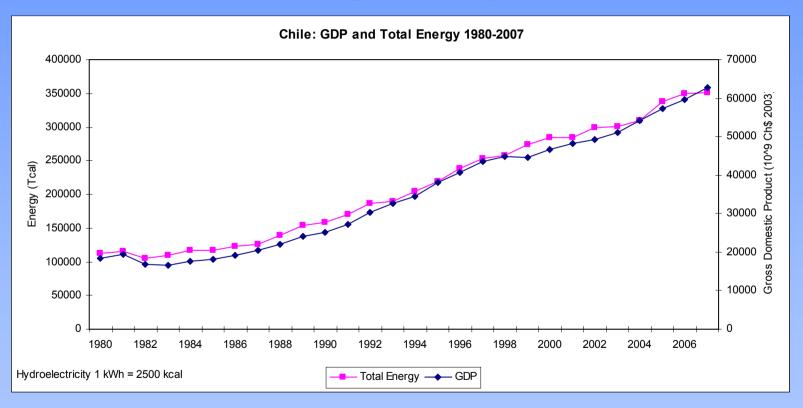


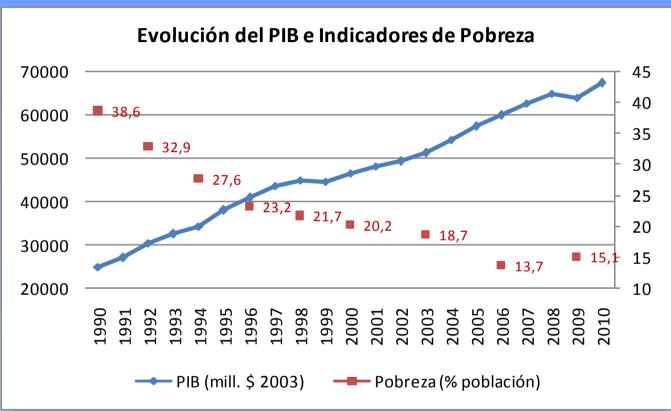
Matriz energética en Chile: ¿Qué camino seguir?

Susana Jiménez S.


sjimenez@lyd.org - @sjimenezlyd

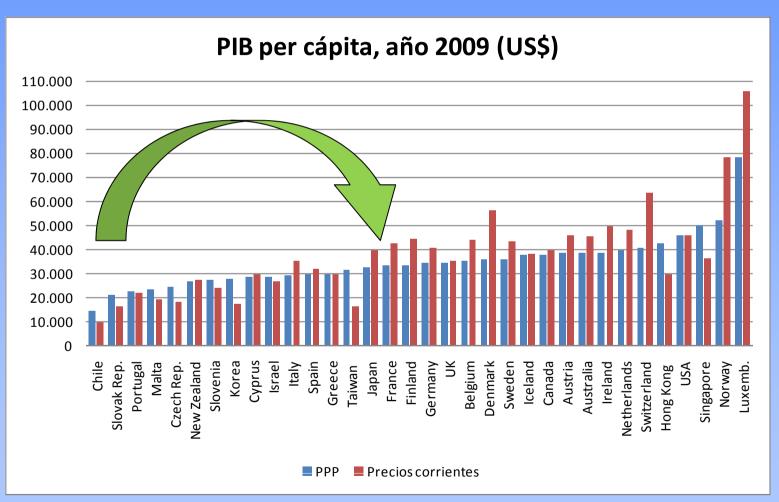
Temario

- ✓ Antecedentes Generales
- ✓ Nuestra Matriz Energética
- ✓ Mirando hacia el Futuro
- ✓ HidroAysén
- **✓** Conclusiones

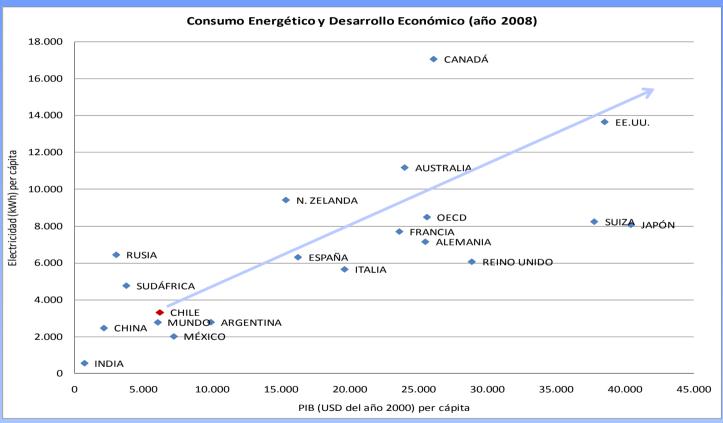


Para crecer se requiere energía...

Period	GDP	Total Energy		
1985-1997	7.6%	6.7%		
1997-2007	3.7%	3.3%		

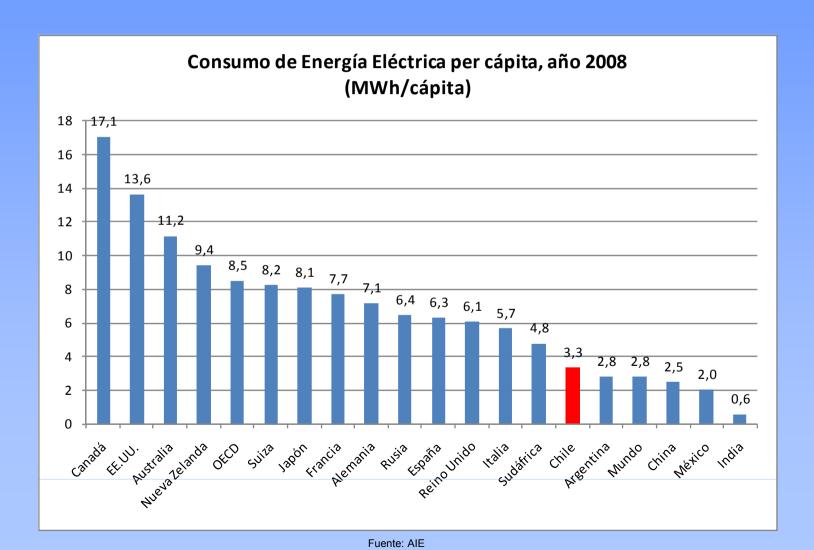


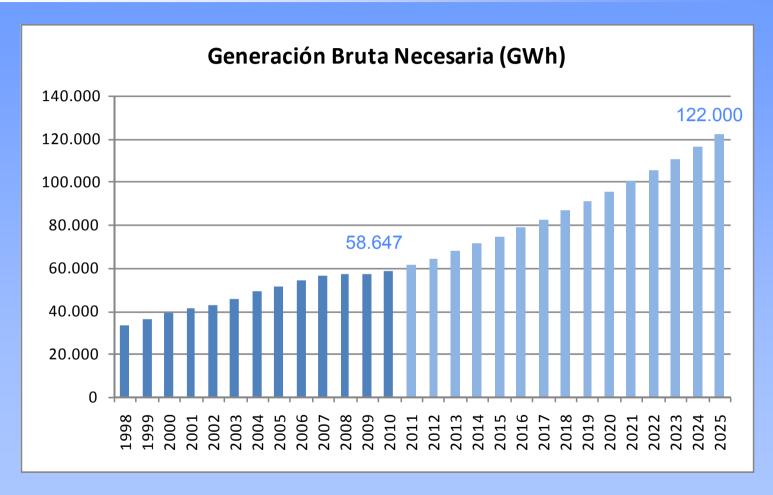
Y se necesita crecer para superar la pobreza...


	1990	2009
Hogares no hacinados	75 <i>,</i> 7%	90,9%
Hogares con acceso a agua potable	86,2%	94,0%
Hogares con energía eléctrica	92,7%	99,6%
Escolaridad promedio (años)	9,0	10,4

Chile vs. Países Desarrollados

Consumo Energético en el Mundo

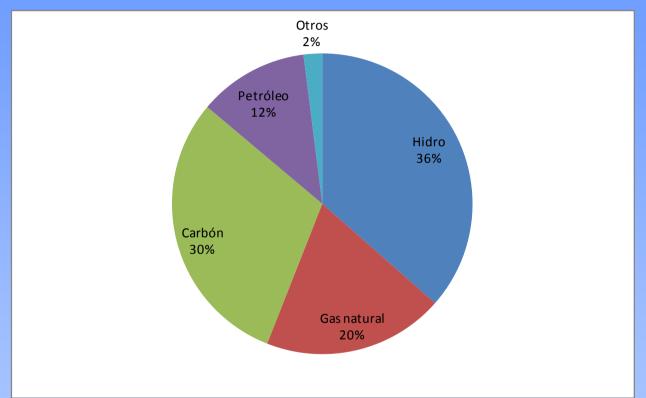



	Chile	Australia	Nva. Zelanda	EE.UU	OECD
TPES (mill. de tep)	31	130	17	2284	5422
Intensidad Energética (TPES/PIB (PPP))	0,16	0,19	0,17	0,19	0,16
Consumo Energético por Hab. (tep/cápita)	1,88	6,05	3,93	7,50	4,56
Consumo Eléctrico por Hab. (KWh/cápita)	3.327	11.174	9.413	13.647	8.486

Fuente: AIE

Consumo Energético en Chile y el Mundo

Se necesitará generar más energía. Desafío: ¿cómo satisfacer las necesidades de los próximos 20, 30 o 40 años?



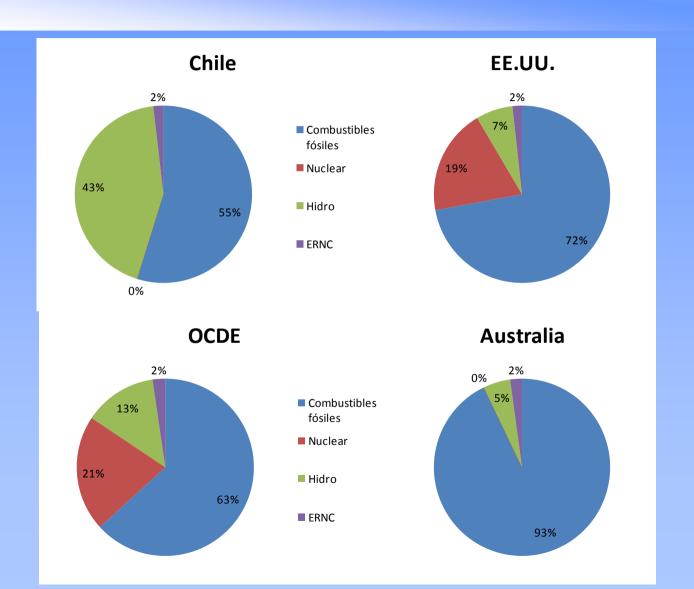
- ✓ Para ser un país desarrollado necesitamos duplicar la producción y consumo de electricidad en 14 años. La generación eléctrica debiera aumentar 5%-6% anual durante la próxima década.
- ✓ La eficiencia energética permitiría ahorrar requerimiento futuros, pero no será suficiente para evitar el aumento de demanda.
- ✓ No se puede arriesgar que la insuficiencia de suministro se convierta en un cuello de botella para el desarrollo económico y social del país.

Nuestra Matriz Energética

Generación Eléctrica en Chile, 2010 (GWh y % del total)

	SIC	SING	TOTAL
Hidro	21.198	57	21.255
Gas natural	7.313	4.042	11.355
Carbón	8.835	8.737	17.571
Petróleo	4.645	2.264	6.909
Otros	1.167	-	1.167
TOTAL	43.157	15.100	58.257

Chile: Fuentes de Generación Eléctrica

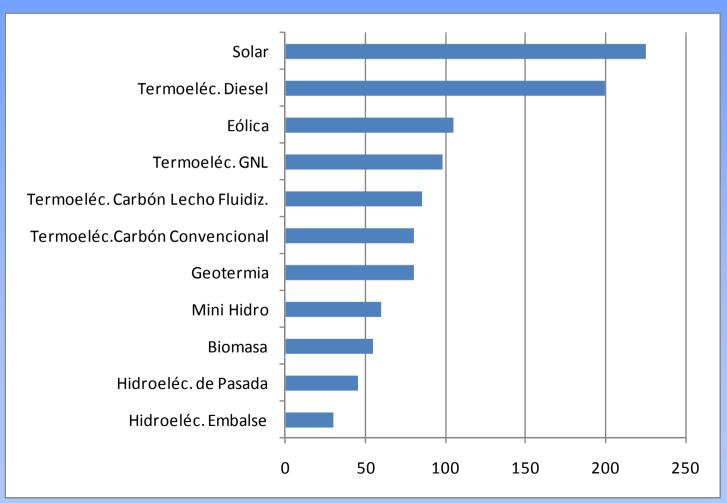


- ✓El sistema energético ha funcionado bien en los últimos 30 años, permitiendo que la demanda y la oferta de electricidad se multiplicaran por 4. Las situaciones críticas han sido superadas apropiadamente.
- ✓ La política energética establece como objetivo principal velar por que la demanda energética sea abastecida de forma segura, económica y sustentable.
 - Funcionamiento de un mercado competitivo y libre, en un ambiente de subsidiaridad del Estado.
 - Regulación eficiente de las actividades en que hay monopolios naturales, como la transmisión y distribución de la electricidad.
 - Monitoreo del funcionamiento y desarrollo del sector con miras a adecuar las regulaciones para alcanzar objetivos explícitos de interés colectivo: seguridad de corto y largo plazo, ERNC, eficiencia energética.
 - Regulaciones objetivas y transparentes para la protección del ambiente.

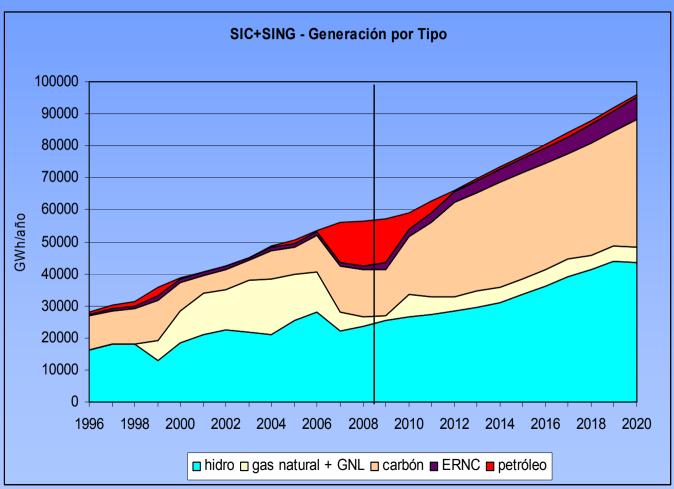
- ✓ La matriz ha evolucionado en los últimos años, pero mantiene una participación importante de **energías renovables**, que supera la de países desarrollados y de muchas partes del resto del mundo.
- ✓ La composición de la matriz energética de los próximos años dependerá de los **costos de desarrollo** de las distintas tecnologías de generación y otras variables sobre los que se puede actuar (como la diversificación, independencia, sustentabilidad).
- ✓ La **política energética** ha empezado a ser objeto de cuestionamiento y ha aumentado la presión de la opinión pública en distintas materias.

Generación Eléctrica 2009

Mirando hacia el Futuro

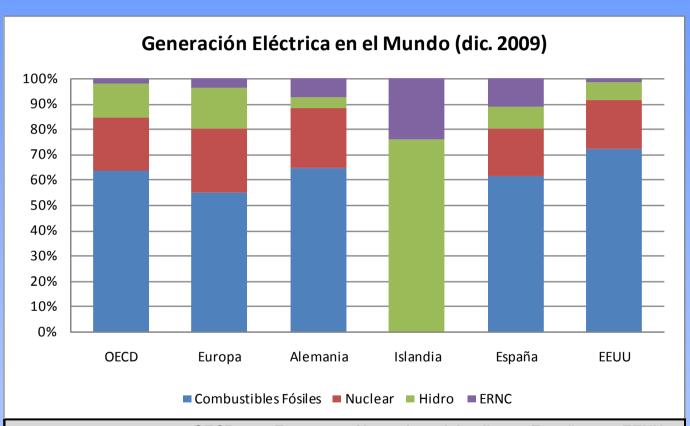

- ✓ En los próximos años se espera un aumento de participación de centrales a carbón, desarrollo hidroeléctrico importante, mayor uso de GNL en centrales de ciclo combinado y penetración creciente de ERNC.
- ✓ Las proyecciones internacionales son coincidentes: las **fuentes convencionales** (carbón y gas natural) seguirán liderando la producción de energía en el mundo, mientras que las ERNC mantendrán una participación menor.

Futuro Energía en el Mundo: Escenarios al 2035 (mill. de GWh)


- ✓ ERNC: pese a sus bondades, técnicamente y también por los mayores costos de algunas de estas formas de energía, se considera que no podrán sostener por si solas el desarrollo energético.
- ✓ La baja participación esperada de las ERNC responde a la dificultad que tienen para competir con las formas convencionales de energía: tienen costos más altos, intermitencia y bajo factor de planta.

- ✓ En Chile, la mejor opción de competir la tiene las **minihidro, biomasa** y algunos proyectos **geotérmicos**. Los proyectos eólicos y solares tienen sus inconvenientes y la opción mareomotriz se ve lejana.
- ✓ La velocidad de desarrollo de la ERNC es lenta, dada su baja escala, y posiblemente la potencia total instalada no represente más que 8% a 9% de la producción total de electricidad en Chile hacia el 2020.

Proyección de Generación Eléctrica

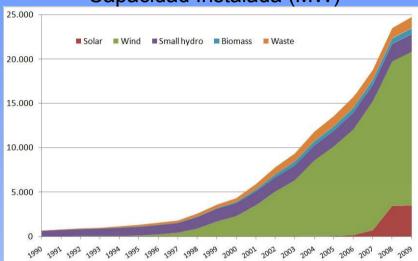

Proyecciones 2020						
Hidroeléctrica	45%					
Termoeléctrica	45%					
ERNC	10%					

Fuente: Synex

- ✓ Las proyecciones respecto de las fuentes de generación esperada al **2020** hablan de una **matriz muy limpia**, pues tendría un componente importante de energía renovable.
- ✓ La competencia tecnológica se da en la **generación convencional**: termo, hidro, nuclear. Chile no debiera dejar de basar su generación eléctrica en fuentes convencionales, dada sus **ventajas económicas y de continuidad de suministro**.

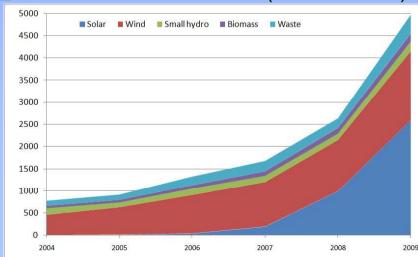
- ✓ La participación de las ERNC podría ser mayor si se fuerza su ingreso al sistema por la vía legislativa. Ley Nº 20.257. Proyecto 20/20.
- ✓ Simulando que 20% de la generación es provista hoy con ERNC, significaría un 10% de alza en tarifas a clientes residenciales. Esto eleva el gasto mensual en electricidad a 9,3% del ingreso monetario en el quintil más bajo.
- ✓ No se debe encarecer más la energía, que ya ha multiplicado por tres su precio desde 2004.
- ✓ Hay otras formas de promover ERNC: subsidio directo a la inversión. Esto no distorsiona las señales de precios.

Participación de ERNC en el Mundo



	OECD	Europa	Alemania	Islandia	España	EEUU
Combustibles Fósiles	63%	55%	65%	0%	61%	72%
Nuclear	21%	25%	23%	0%	19%	19%
Hidro	13%	16%	4%	76%	9%	7%
ERNC	2%	4%	8%	24%	12%	2%

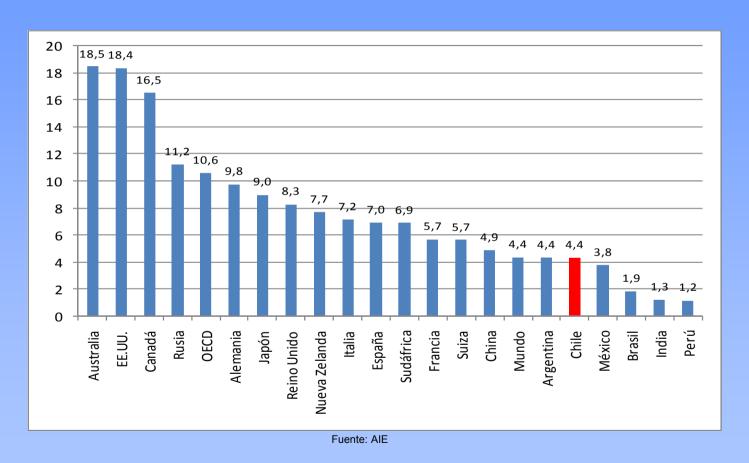
Fuente: IEA


El caso de España

Capacidad Instalada (MW)

España:
Fuerte impulso a
ERNC...con gran esfuerzo
económico.

Subsidio a renovables (mill. de euros)



El Tema Ambiental

- ✓ Se dice que los costos de generación eléctrica por fuentes convencionales no consideran las **externalidades negativas** (emisiones NO2, SO, MP y CO2).
- ✓ Las externalidades **locales** sí están reflejadas en la aprobación / rechazo de los proyectos vía EIA y normas de emisión.
- ✓ Las emisiones de CO2, efectivamente, no están valoradas en los precios de largo plazo de la generación eléctrica.
 - El mundo no se ha puesto de acuerdo en esta materia, pero es previsible que se avance hacia un sistema de impuesto a la emisión de CO2 o hacia uno de *cap and trade*.
 - Es conveniente que nos adelantemos? Chile es un país relativamente «limpio» y no debiera autoimponerse costos adicionales.

Emisiones de CO2 por habitante, 2008 (ton CO2/cápita)

✓ Chile aporta un 0,25% de las emisiones mundiales y las emisiones por habitante son bajas a nivel global.

Desempeño Ambiental de Chile

Índice de Desempeño Ambiental (EPI)

	Mundo		Latinoamérica APEC					
1	Islandia	93,5	1	Costa Rica	86,4	1	Nueva Zelanda	73,4
2	Suiza	89,1	2	Cuba	78,1	2	Chile	73,3
3	Costa Rica	86,4	3	Colombia	76,8	3	Japón	72,5
4	Suecia	86	4	Chile	73,3	4	Singapur	69,6
5	Noruega	81,1	5	Panama	71,4	5	Perú	69,3
6	Mauricio	80,6	6	Belize	69,9	6	México	67,3
7	Francia	78,2	7	Antigua y Barb.	69,8	7	Canadá	66,4
8	Austria	78,1	8	Ecuador	69,3	8	Filipinas	65,7
9	Cuba	78,1	9	Perú	69,3	9	Australia	65,7
10	Colombia	76,8	10	El Salvador	69,1	10	Malasia	65
11	Malta	76,3				11	EEUU	63,5
12	Finlandia	74,7				12	Tailandia	62,2
13	Eslovaquia	74,5				13	Rusia	61,2
14	Reino Unido	74,2				14	Brunei	60,8
15	Nueva Zelanda	73,4				15	Vietnam	59
16	Chile	73,3				16	Corea del Sur	57
17	Alemania	73,2				17	China	49
18	Italia	73,1				18	Indonesia	44,6
19	Portugal	73				19	Papua N.G.	44,3
20	Japón	72,5						

Fuente: Universidad de Yale

La Opción Nuclear

- ✓ Eventual alza de precios de generación termoeléctrica y gradual agotamiento de fuentes hídricas hacen necesario considerar la opción nuclear.
- ✓ Existen 440 plantas nucleares en operación en el mundo y se están construyendo 30 más, con estrictas regulaciones de seguridad.
- ✓ La **tecnología nuclear más moderna** es segura y, además, presenta costos competitivos cuando opera a gran escala y no emite gases contaminantes.
- ✓ Se debe avanzar en evaluar y estudiar la energía nuclear, desarrollar capacidades y promover la difusión de conocimiento en la población.

	Superficie	Energía Media		Altura de	Caudal de
Central	Embalse	Anual	Potencia	Muro	Diseño
	(hectáreas)	(GWh)	(MW)	(metros)	(M3/s)
Baker 1	710	4.420	660	102	927
Baker 2	3.600	2.540	360	40	1.275
Pascua 1	500	3.020	460	69	880
Pascua 2.1	990	5.110	770	114	980
Pascua 2.2	110	3.340	500	79	980
Total	5.910	18.430	2.750		

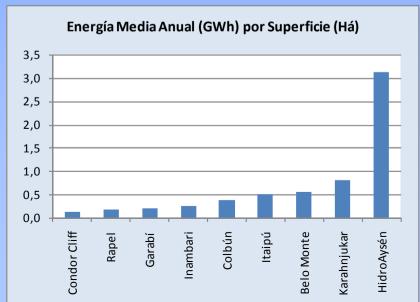

Potencia total instalada: 2.750 MW. Equivale al 18,5% de la potencia instalada en Chile el año 2010 (14.878MW).

Generación media anual: 18.430 GWh. Equivale a 31,6% del consumo total de nuestro país el año 2010.

Superficie de embalse total: 5.910 Hectáreas. Equivale al 0,05% de la superficie de la Región de Aysén.

Costo de construcción: US\$ 3.200 millones.

Se inunda la Patagonia?



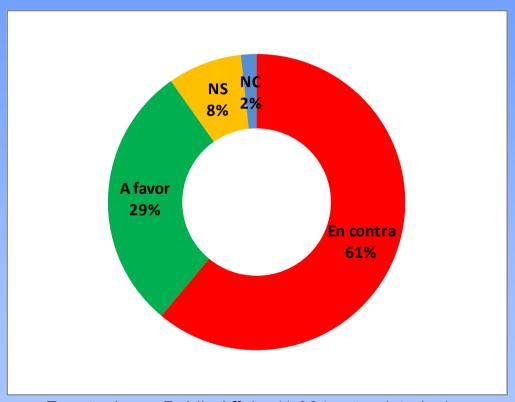
La superficie embalsada equivale al 74% del Lago Rapel.

Línea de transmisión:

- ✓ Tramo: Cochrane Santiago. La extensión, medida linealmente, alcanza 1.912 kilómetros e incluye 160 kilómetros de tramo submarino. Se inicia a 300 kms. al norte de Torres del Paine.
- ✓ Costo estimado: US\$ 3.800 millones.
- ✓ Transmisión: corriente continua dada la longitud del trayecto, lo que reduce las pérdidas de energía. Franja de servidumbre de 70 mts. de ancho.
- ✓ Evaluación ambiental: ingresaría hacia fines de este año y posiblemente tomará un tiempo similar a la tramitación de las centrales.

País	Proyecto	Generación (GWh/año)	Superficie (hectáreas)	Energía Media Anual por Há (GWh anual/Há)
Chile	HidroAysén	18.430	5.910	3,12
Brasil	Belo Monte	28.000	51.600	0,54
Perú	Inambari	11.532	46.000	0,25
Arg-Brasil	Garabí	6.100	31.000	0,20
Argentina	Condor Cliff	5.100	43.785	0,12
Chile	Rapel (1968)	1.376	8.000	0,17
Chile	Colbún (1985)	2.223	5.700	0,39
Brasil-Paraguay	Itaipú (1984)	67.500	135.000	0,50
Islandia	Karahnjukar (2009)	4.560	5.700	0,80

HidroAysén sería el proyecto más **eficiente** de Latinoamérica pues generaría la mayor energía por hectárea embalsada.


Medidas de Mitigación:

- ✓ Relocalización y seguimiento de 13 familias.
- ✓ Creación de Centros de Difusión Cultural.
- ✓ Creación de un Área de Conservación de 11.560 hectáreas.
- ✓ Reforestación con especies nativas de 4.500 hectáreas.
- ✓ Creación de Centros de Información Turística.
- ✓ Desarrollo de estudios.
- ✓ Plan de Seguimiento Ambiental.
- ✓ Energía barata para la región.

Obras de Infraestructura:

- ✓ Mejoramiento de 187 kms. de camino.
- ✓Infraestructura portuaria.
- ✓ Construcción y operación de un relleno sanitario.
- ✓ Habilitar un sistema de comunicación VHF en la zona del proyecto.
- ✓ Construcción de oficinas y 40 viviendas en la localidad de Cochrane.
- ✓ Aumento de empleo promedio mensual de 2.260 trabajadores durante el período de construcción, estimado en 11,5 años.

¿Está Ud. a favor de centrales hidroelétricas en Aysén?

Fuente: Ipsos Public Affairs (1.024 entrevistados)

¿Qué explica estos niveles de rechazo?

Fuentes Convencionales:

- Hidroelectricidad
- Carbón
- Gas natural regional
- Gas natural licuado
- Nuclear
- Interconexiones internacionales

Fuentes no convencionales:

- Mini hidráulica
- Eólica
- Biomasa y biogás
- Solar
- Geotérmica
- Biocombustibles
- Mareomotriz

Limpias (menor aporte de CO2) Aumentan dependencia externa

1) Solar y Eólica: el país cuenta con un enorme potencial de desarrollo de estas energías.

	Potencia instalada	Superficie utilizada	Número de Líneas
	(MW)	(Há)	Numero de Lineas
HidroAysén	2.750	5.910	1 de 800 kV CC
Solar Fotovoltaico	10.600	63.500	4 de 500 kV
Concentración Solar	6.000	12.000	2 de 500 kV
Eólica	7.000	48.500	5 de 500 kV

Fuente: Juan Carlos Olmedo

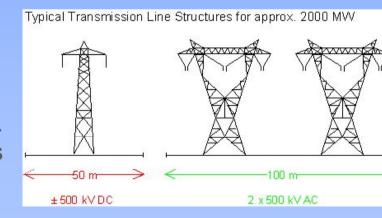
2) Mix de ERNC: catastro completo de proyectos en el SEIA. Son 88 proyectos que suman una capacidad instalada de 2.944 MW.

	HidroAysén	Proyectos ERNC
Potencia (MW)	2.750	2.944
Energía (TWh/año)	18,0	10,4
Factor de Planta	74,7%	40,5%
Superficie (Há)	5.900	17.714
Superficie. Espec. (Há/MW)	2,1	6,0
Ríos afectados	2	43

Fuente: Elaboración propia en base a información del SEIA

3) Termoeléctricas:

- ✓El proyecto HidroAysén es comparable con siete centrales termoeléctricas.
- ✓ Opción conveniente del punto de vista de los costos económicos.
- ✓ Generarían en torno a 16 mill. de ton. al año de GEI, equivalentes al 20% del total de las emisiones actuales de Chile (80 mill. de ton de CO2 anuales).
- ✓4) <u>Nuclear</u>: oposición a proyectos hidro y termoeléctricos, sumado a baja escala de desarrollo de ERNC, deja como alternativa adelantar la opción nuclear.


Paisaje y Recursos Hídricos

Se agotarán los recursos hídricos no dejando espacio para otras actividades en la zona?

Las centrales no agotan el agua que utilizan pues la devuelven en su totalidad a los cauces naturales de los ríos (derechos de agua no consuntivos).

Las torres arruinarán el paisaje?

- Cualquier fuente de energía requiere de líneas de trasmisión.
- La transmisión en corriente continua permite reducir pérdidas, a la vez que interviene menos el paisaje (faja de 70 mts. vs. 200mts.).
- Evita el paso por parques nacionales y áreas silvestres protegidas, contemplando un tramo submarino.

- ✓El agua es la principal fuente de generación energética de Chile. Es abundante, barata, limpia y renovable.

 Nuestra matriz energética tiene alta participación de energías renovables.
- Nuestra matriz energética tiene alta participación de energías renovables, pero también alta dependencia de combustibles fósiles.
- ✓ HidroAysén es una alternativa conveniente para enfrentar los desafíos energéticos del país porque:
 - Aporta a las crecientes necesidades energéticas del país.
 - Es una fuente limpia y renovable.
 - Amplía participación de energías limpias en la matriz energética en un contexto de creciente preocupación por las emisiones de GEI y la huella de carbono.
 - Es una energía segura, que aporta estabilidad del sistema.
 - Es una fuente más barata de generación eléctrica, lo cual debiera ayudar a bajar los altos precios de la energía.

- ✓ La **política energética** debe enfocarse en promover la seguridad, lograr objetivos de carácter económico y social y alcanzar metas medioambientales.
- ✓ Es fundamental desarrollar una estrategia que asegure en el largo plazo la disponibilidad suficiente y a mínimo costo de suministro energético para no frenar el desarrollo del país.
- ✓ Las decisiones deben tomarse con tiempo, evitando que grupos de presión retrasen el necesario avance que el país requiere en materia energética.

- ✓ El país va a requerir de todas las formas posibles de generación eléctrica, por lo que **ninguna opción debe ser descartada**.
- ✓ La competencia tecnológica se da en la **generación convencional**: termo, hidro, nuclear.
- ✓ La generación en base a **combustibles fósiles** mantendrá una presencia relevante en la matriz, dada sus ventajas económicas y de continuidad de suministro.
- ✓ La **hidroelectricidad** también seguirá siendo importante, como corresponde a un país que dispone de recursos hídricos. La hidroelectricidad permite generación económica a gran escala, es renovable, limpia y reduce la dependencia externa.
- ✓ Las **ERNC** continuarán desarrollándose y posiblemente aumentarán las medidas que ayuden o fuercen su entrada al sistema. Es esperable que los costos medios de estas tecnologías se reduzcan en el futuro.

- ✓ Resultaría conveniente **retrasar el compromiso** de elevar a 20% la participación de las ERNC en la matriz. Se debiera alentar el desarrollo de ERNC por otras vías.
- ✓ Agilizar el régimen de aprobación / rechazo de EIA y el otorgamiento de concesiones, servidumbres y permisos.
- ✓ Avanzar en el estudio de un **plan nuclear**, por ser una fuente limpia de generación que alcanza precios competitivos.
- ✓ Generar capacidad interna para medir, reducir y certificar la **huella de carbono**, lo que permitirá a futuro facilitar el proceso de comercialización de los productos nacionales.
- ✓ Continuar difundiendo información y promoviendo la **eficiencia energética**, pues es un mecanismo eficiente y eficaz para reducir la emisión de GEI.

Muchas gracias.